Practice Questions and Solutions for Virtual Coaching Classes Paper 8A: Financial Management Topic: Risk Analysis in Capital Budgeting

Illustration-1

Possible net cash flows of Projects A and B at the end of first year and their probabilities are given as below. Discount rate is 10 per cent. For both the project initial investment is ₹10,000. From the following information, CALCULATE the expected net present value for each project. State which project is preferable?

Possible	Project A		Project B	
Event	Cash Flow (₹)	Probability	Cash Flow (₹)	Probability
A	8,000	0.10	24,000	0.10
В	10,000	0.20	20,000	0.15
С	12,000	0.40	16,000	0.50
D	14,000	0.20	12,000	0.15
E	16,000	0.10	8 ,000	0.10

Solution:

Calculation of Expected Value for Project A and Project B

	Pr	oject A		Project B		
Possible Event	Net Cash Flow	Probability	Expected Value	Cash Flow	Probability	Expected Value
	(₹)		(₹)	(₹)		(₹)
А	8,000	0.10	800	24,000	0.10	2,400
В	10,000	0.20	2,000	20,000	0.15	3,000
С	12,000	0.40	4,800	16,000	0.50	8,000
D	14,000	0.20	2,800	12,000	0.15	1,800
E	16,000	0.10	1,600	8,000	0.10	800
ENCF			12,000			16,000

The net present value for Project A is (0.909 × ₹ 12,000 – ₹ 10,000) = ₹ 908

The net present value for Project B is (0.909 × ₹ 16,000 – ₹10,000) = ₹ 4,544.

Illustration-2

2

Probabilities for net cash flows for 3 years of a project are as follows:

	Year 1		Year 2		Year 3	
	Cash Flow (₹)	Probability	Cash Flow (₹)	Probability	Cash Flow (₹)	Probability
ſ	2,000	0.1	2,000	0.2	2,000	0.3
	4,000	0.2	4,000	0.3	4,000	0.4
	6,000	0.3	6,000	0.4	6,000	0.2
	8,000	0.4	8,000	0.1	8,000	0.1

CALCULATE the expected net cash flows. Also calculate net present value of the project using expected cash flows using 10 per cent discount rate. Initial Investment is \gtrless 10,000.

Solution:

Year 1			Year 2		Year 3			
Cash Flow (₹)	Probability	Expected Value (₹)	Cash Flow (₹)	Probability	Expected Value (₹)	Cash Flow (₹)	Probability	Expected Value (₹)
2,000	0.1	200	2,000	0.2	400	2,000	0.3	600
4,000	0.2	800	4,000	0.3	1200	4,000	0.4	1,600
6,000	0.3	1,800	6,000	0.4	2400	6,000	0.2	1,200
8,000	0.4	3,200	8,000	0.1	800	8,000	0.1	800
ENCF		6,000			4,800			4,200

The present value of the expected value of cash flow at 10 per cent discount rate has been determined as follows:

Procent Value of each flow	$_$ ENCF ₁ $_$ ENCF ₂ $_$ ENCF ₃
Fresent value of cash now	$-\frac{1}{(1+k)^{1}}+\frac{1}{(1+k)^{2}}+\frac{1}{(1+k)^{3}}$
	$=\frac{6,000}{4,800}+\frac{4,800}{4,200}$
	- (1.1) $+$ (1.1) ² $+$ (1.1) ³

 $= (6,000 \times 0.909) + (4,800 \times 0.826) + (4,200 + 0.751)$

= 12,573

Expected Net Present value = Present Value of cash flow - Initial Investment = ₹ 12,573 - ₹ 10,000 = ₹ 2,573.

Illustration-3

Continuing Illustration 1, Calculate Variance and Standard Deviation of both the project.

Solution:

Project A

Variance $(\sigma^2) = (8,000 - 12,000)^2 \times (0.1) + (10,000 - 12,000)^2 \times (0.2) + (12,000 - 12000)^2 \times (0.4) + (14,000 - 12,000)^2 \times (0.2) + (16000 - 12,000)^2 \times (0.1)$

= 16,00,000 + 8,00,000 + 0 + 8,00,000 + 16,00,000 = 48,00,000

Standard Deviation (σ) = $\sqrt{Variance(\sigma^2)} = \sqrt{48,00,000} = 2,190.90$

Project B:

 $\begin{array}{l} \mbox{Variance}(\sigma^{2)} = (24,000 - 16,000)^2 \times (0.1) + (20,000 - 16,000)^2 \times (0.15) + (16,000 - 16,000)^2 \times (0.5) + (12,000 - 16,000)^2 \times (0.15) + (8,000 - 16,000)^2 \times (0.1) \end{array}$

= 64,00,000 + 24,00,000 + 0 + 24,00,000 + 64,00,000 = 1,76,00,000

Standard Deviation (σ) = $\sqrt{1,76,00,000}$ = 4195.23

Illustration-4

Continuing Illustration 3, Calculate Coefficient of Variation of both the project.

Solution:

Projects	Coefficient of variation	Risk	Expected Value
A	$\frac{2,190.90}{12,000} = 0.1826$	Less	Less
В	$\frac{4,195.23}{16,000} = 0.2622$	More	More

In project A risk per rupee of cash flow is Rs. 0.18 while in project B it is Rs. 0.26. Therefore, Project A is better than Project B.

Illustration-5

An enterprise is investing ₹ 100 lakhs in a project. The risk-free rate of return is 7%. Risk premium expected by the Management is 7%. The life of the project is 5 years. Following are the cash flows that are estimated over the life of the project.

Year	Cash flows (<i>₹</i> in lakhs)
1	25
2	60
3	75
4	80

4 RISK ANALYSIS IN CAPITAL BUDGETING

5	65

CALCULATE Net Present Value of the project based on Risk free rate and also on the basis of Risks adjusted discount rate.

Solution:

The Present Value of the Cash Flows for all the years by discounting the cash flow at 7% is calculated as below:

Year	Cash flows ₹ in lakhs	Discounting Factor @7%	Present value of Cash Flows ₹ In Lakhs
1	25	0.935	23.38
2	60	0.873	52.38
3	75	0.816	61.20
4	80	0.763	61.04
5	65	0.713	46.35
Total of present value of Cash flow			244.34
Less: Initial investment			100.00
Net Pres	ent Value (NPV)		144.34

Now when the risk-free rate is 7% and the risk premium expected by the Management is 7%. So the risk adjusted discount rate is 7% + 7% = 14%.

Discounting the above cash flows using the Risk Adjusted Discount Rate would be as below:

Year	Cash flows ₹ in Lakhs	Discounting Factor@14%	Present Value of Cash Flows ₹ in lakhs
1	25	0.877	21.93
2	60	0.769	46.14
3	75	0.675	50.63
4	80	0.592	47.36
5	65	0.519	33.74
Total of present value of Cash flow			199.79
Initial investment			100.00
Net present value (NPV)			99.79

Illustration-6

If Investment proposal is ₹ 45,00,000 and risk free rate is 5%, CALCULATE net present value under certainty equivalent technique.

Year	Expected cash flow (₹)	Certainty Equivalent coefficient
1	10,00,000	0.90

PAPER 8A: FINANCIAL MANAGEMENT

2	15,00,000	0.85		
3	20,00,000	0.82		
4	25,00,000	0.78		
Solution				

Solution:

$NPV = \frac{10,00,000 \times (0.90)}{1000} + \frac{10,000}{1000} + \frac{1000}{1000} + 1000$	$15,00,000 \times (0.85)$	$+\frac{20,00,000\times(0.82)}{20,000\times(0.82)}$	$\frac{25,00,000 \times (0.78)}{25,00,000 \times (0.78)}$	45 00 000
(1.05)	(1.05)2	(1.05)3	(1.05)4	45,00,000

= ₹ 5,34,570

Illustration-7

X Ltd is considering its New Product 'with the following details:

Sr. No.	Particulars	Figures
1	Initial capital cost	₹400 Cr
2	Annual unit sales	5 Cr
3	Selling price per unit	₹100
4	Variable cost per unit	₹50
5	Fixed costs per year	₹50 Cr
6	Discount Rate	6%

Required:

- 1. CALCULATE the NPV of the project.
- 2. COMPUTE the impact on the project's NPV of a 2.5 per cent adverse variance in each variable. Which variable is having maximum effect. Consider Life of the project as 3 years.

Solution:

1. Calculation of Net Cash Inflow per year:

	Particulars	Amount (₹)
A	Selling Price Per Unit (A)	100
В	Variable Cost Per Unit (B)	50
С	Contribution Per Unit (C = A-B)	50
D	Number of Units Sold Per Year	5 Cr.
E	Total Contribution (E = C × D)	₹ 250 Cr.
F	Fixed Cost Per Year	₹ 50 Cr.
G	Net Cash Inflow Per Year (G = E - F)	₹ 200 Cr.

Year	Year Cash Flow (₹ in Cr.)	Discounting @ 6%	Present Value (PV) (₹ in Cr.)
0	(400.00)	1.000	(400.00)
1	200.00	0.943	188.60
2	200.00	0.890	178.00
3	200.00	0.840	168.00
Net Prese	ent Value (188.60 + 178 ·	134.60	

Calculation of Net Present Value (NPV) of the Project:

Here NPV represent the most likely outcomes and not the actual outcomes. The actual outcome can be lower or higher than the expected outcome.

	Changes in variable	Base	Initial Cash Flow increased to ₹ 410 crore	Selling Price per Unit Reduced to ₹ 97.5	Variable Cost Per Unit increased to ₹ 51.25	Fixed Cost Per Unit increased to ₹ 51.25	Units sold per year reduced to 4.875 crore
	Particulars	Amount	Amount	Amount	Amount	Amount	Amount
		₹	₹	₹	₹	₹	₹
A	Selling Price Per Unit (A)	100	100	97.5	100	100	100
В	Variable Cost Per Unit (B)	50	50	50	51.25	50	50
С	Contribution Per Unit (C = A-B)	50	50	47.5	48.75	50	50
D	Number of Units Sold Per Year (in Crores)	5	5	5	5	5	4.875
E	Total Contribution (E = C × D)	250	250	237.5	243.75	250	243.75
F	Fixed Cost Per Year (in Crores)	50	50	50	50	51.25	50

2. Sensitivity Analysis considering 2.5 % Adverse Variance in each variable

PAPER 8A: FINANCIAL MANAGEMENT

G	Net Cash Inflow Per	200	200	187.5	193.75	198.75	193.75
	Year						
	(G = E - F)						
Η	(G × 2.673)	534.60	534.60	501.19	517.89	531.26	517.89
Ι	Initial Cash Flow	400	410	400	400	400	400
J	NPV	134.60	124.60	101.19	117.89	131.26	117.89
K	Percentage Change in NPV		-7.43%	-24.82%	-12.41%	-2.48%	-12.41%

The above table shows that by varying one variable at a time by 2.5% while keeping the others constant, the impact in percentage terms on the NPV of the project can be calculated. Thus, it can be seen that the change in selling price has the maximum effect on the NPV by 24.82 %.

Illustration-8

XYZ Ltd. is considering a project "A" with an initial outlay of \gtrless 14,00,000 and the possible three cash inflow attached with the project as follows:

			(₹000)
Particular	Year 1	Year 2	Year 3
Worst case	450	400	700
Most likely	550	450	800
Best case	650	500	900

Assuming the cost of capital as 9%, determine NPV in each scenario. If XYZ Ltd is certain about the most likely result but uncertain about the third year's cash flow, ANALYSE what will be the NPV expecting worst scenario in the third year.

Solution:

The possible outcomes will be as follows:

Year	PVF @ 9%	Worst Case		Most likely		Best case	
		Cash Flow ₹ 000	PV ₹ 000	Cash Flow ₹ 000	PV ₹ 000	Cash Flow ₹ 000	PV ₹000
0	1	(1400)	(1400)	(1400)	(1400)	(1400)	(1400)
1	0.917	450	412.65	550	504.35	650	596.05
2	0.842	400	336.80	450	378.90	500	421.00
3	0.772	700	540.40	800	617.60	900	694.80
NPV			-110.15		100.85		311.85

Now suppose that CEO of XYZ Ltd. is bit confident about the estimates in the first two years, but not sure about the third year's high cash inflow. He is interested in knowing what will happen

8 RISK ANALYSIS IN CAPITAL BUDGETING

to traditional NPV if 3rd year turn out the bad contrary to his optimism. The NPV in such case will be as follows:

= -₹14,00,000+	5,50,000	4,50,000	7,00,000
	(1+0.09)	(1+0.09) ²	(1+0.09) ³

= -₹14,00,000 +₹5,04,587 +₹3,78,756 + ₹5,40,528 =₹23,871

Illustration-9

DETERMINE the risk adjusted net present value of the following projects:

	X	Y	Z
Net cash outlays (₹)	2,10,000	1,20,000	1,00,000
Project life	5 years	5 years	5 years
Annual Cash inflow (₹)	70,000	42,000	30,000
Coefficient of variation	1.2	0.8	0.4

The Company selects the risk-adjusted rate of discount on the basis of the coefficient of variation:

Coefficient of Variation	Risk-Adjusted Rate of Return	P.V. Factor 1 to 5 years At risk adjusted rate of discount
0.0	10%	3.791
0.4	12%	3.605
0.8	14%	3.433
1.2	16%	3.274
1.6	18%	3.127
2.0	22%	2.864
More than 2.0	25%	2.689

Solution:

Statement showing the determination of the risk adjusted net present value

Projects	Net cash outlays	Coefficient of variation	Risk adjusted discount rate	Annual cash inflow	PV factor 1-5 years	Discounted cash inflow	Net present value
	(₹)			(₹)		(₹)	(₹)
Х	2,10,000	1.20	16%	70,000	3.274	2,29,180	19,180
Y	1,20,000	0.80	14%	42,000	3.433	1,44,186	24,186
Z	1,00,000	0.40	12%	30,000	3.605	1,08,150	8,150

PAPER 8A: FINANCIAL MANAGEMENT

Illustration-10

A Ltd. is considering two mutually exclusive projects X and Y.

You have been given below the Net Cash flow probability distribution of each project:

Project-X		Project-Y	
Net Cash Flow (₹)	Probability	Net Cash Flow (₹)	Probability
50,000	0.30	1,30,000	0.20
60,000	0.30	1,10,000	0.30
70,000	0.40	90,000	0.50

(i) Compute the following :

- (a) Expected Net Cash Flow of each project.
- (b) Variance of each project.
- (c) Standard Deviation of each project.
- (d) Coefficient of Variation of each project.
- (ii) Identify which project do you recommend? Give reason.

Solution:

(i) (a) Calculation of Expected Net Cash Flow (ENCF) of Project X and Project Y

Project X		Project Y			
Net Cash Flow (₹)	Probability	Expected Net Cash Flow (₹)	Net Cash Flow (₹)	Probability	Expected Net Cash Flow (₹)
50,000	0.30	15,000	1,30,000	0.20	26,000
60,000	0.30	18,000	1,10,000	0.30	33,000
70,000	0.40	28,000	90,000	0.50	45,000
ENCF		61,000			1,04,000

(b) Variance of Projects

Project X

Variance (σ^2)	$= (50,000 - 61,000)^2 \times (0.3) + (60,000 - 61,000)^2 \times (0.4)$	$(1,000)^2 \times (0.3) + (70,000 -$	
	= 3,63,00,000 + 3,00,000 + 3,24,00,000	= 6,90,00,000	

Project Y

Variance(σ^2) = (1,30,000 - 1,04,000)² × (0.2) + (1,10,000 - 1,04,000)² × (0.3) + (90,000 - 1,04,000)² × (0.5)

= 13,52,00,000 + 1,08,00,000 + 9,80,00,000 = **24,40,00,000**

(c) Standard Deviation of Projects

Project X

Standard Deviation (σ) = $\sqrt{Variance(\sigma^2)} = \sqrt{6,90,00,000}$ = 8,306.624 **Project Y** Standard Deviation (σ) = $\sqrt{Variance(\sigma^2)} = \sqrt{24,40,00,000}$ = 15,620.499

(d) Coefficient of Variation of Projects

Projects	Coefficient of variation (Standard Deviation (Expected Net Cash Flow)	Risk	Expected Net Cash Flow
X	$\frac{8,306.24}{61,000} = 0.136 \text{ or } 13.60\%$	Less	Less
Y	$\frac{15,620.499}{1,04,000} = 0.150 \text{ or } 15.00\%$	More	More

(ii) In project X risk per rupee of cash flow is 0.136 (approx.) while in project Y it is 0.15 (approx.). Therefore, Project X is better than Project Y.